Aller au contenu

What are some effective techniques for feature scaling?-Forum-Culture Informatique

Avatar
SVP pensez à vous inscrire
guest
sp_LogInOut Connexion sp_Registration S’inscrire
S’inscrire | Mot-de-passe perdu ?
Recherche avancée
Activité du forum




Correspond



Options du forum



La longueur du mot recherché est au minimum de 3 caractères et au maximum de 84 caractères
sp_Feed Flux RSS du sujetsp_TopicIcon
What are some effective techniques for feature scaling?
7 février 2025
10:17:06
Avatar
Gurpreet555
Member
Members
Level 0
Nombre de messages du forum : 3
Membre depuis :
11 décembre 2024
sp_UserOfflineSmall Hors ligne

The feature scaling process is an essential stage in data preprocessing particularly for models of machine learning which rely on calculations based on distance like k-nearest neighbor (KNN) as well as SVM, support vector machines (SVM) as well as the gradient descent-based algorithm. It ensures that all the features are equally incorporated into models by scaling them all to an equal size. There are a variety of effective methods for scaling features and each has its own benefits and applications. Data Science Classes in Pune

The most commonly used techniques most commonly used is Min-Max Scaling (normalization), which alters the scale of a feature within a specific range, usually between 0 and 1. This is a useful technique when data has to be limited within a particular limit. It is especially effective in situations where the data distribution isn’t normal or when using methods that require data to be in the range of a specific amount for example, deep-learning models.

Another method that is widely utilized can be the standardization (z-score normalization), which transforms the data by subtracting the mean, and then dividing the result by the standard deviation. The result is a data set with a mean that is zero and a standard deviation of 1. It is advantageous when the data is based on an Gaussian distribution. It is typically used in models such as the linear regression model, logistic regression or principal component analysis (PCA).

A more secure method especially when dealing with outliers one option includes an effective scaling using the median and interquartile range (IQR) instead of the standard deviation and mean. When you subtract the median, and then subdividing the result by the IQR method, robust scaling makes sure that extreme values don’t significantly affect the transform data. This technique is extremely effective when dealing with data that has large outliers or skewed distributions.

For specific machine learning techniques, log transformation is a different technique that can be beneficial. It transforms data that is skewed into an equivalence distribution by using the logarithm of the feature’s values. This is particularly useful when dealing with data that exhibit exponential growth patterns, like the distribution of income or population.

When categorical features require scale, scaling through encoding techniques like one-hot encoding and label encoding could be used. Although these methods aren’t typical methods for scaling features however, they guarantee that categorical information is properly represented and is similar to numerical data.

The best method for feature scaling is dependent on the type of dataset and algorithm that is being employed. Certain models, such as trees-based algorithms (e.g. random forests and decision trees) don’t require scaling while other models require it to ensure the best performance. A proper feature scaling improves the accuracy of models, accelerates processing speed, and enhances the ability to interpret and makes it a crucial element in machine learning workflows.

Data Scientist Course in Pune
Data Science Course in Pune Fees
Data Science Institute in Pune

11 février 2025
12:53:44
Avatar
SemMM23
Member
Members
Level 0
Nombre de messages du forum : 37
Membre depuis :
17 octobre 2024
sp_UserOfflineSmall Hors ligne

We found a lot of interesting information, in the near future we will consider these proposals

11 février 2025
14:05:42
Avatar
emma.bright
Member
Members
Level 0
Nombre de messages du forum : 13
Membre depuis :
11 février 2025
sp_UserOfflineSmall Hors ligne

Descoperă cele mai bune oferte de rotiri gratuite fara depunere 2025 și începe să joci fără riscuri! Beneficiază de promoții exclusive, joacă fără depunere și câștigă bani reali.

Fuseau horaire du forum :Europe/Paris
Nb max. d’utilisateurs en ligne : 387
Actuellement en ligne : careasy
Invité(s) 124
Consultent cette page actuellement :
1 Invité(s)
Auteurs les plus actifs :
Tomas29: 143
clamb89: 116
hsdrw33: 115
Richardreece: 76
annykeys: 74
johnmathew: 52
xoxeqime: 50
geraldo: 48
webasha5242: 43
alexwilson: 41
Statistiques des membres :
Invités : 145
Membres : 3085
Modérateurs : 0
Administrateurs : 0
Statistiques du forum :
Groupes : 1
Forums : 4
Sujets : 3035
Messages :8388
Nouveaux membres :
Kvintov6666, Lahoreicompanions, goxejir379, Jarrahjam, novamuller, hazeljames, prishajoshi, 928380504, CapCut MOD APK, islataylor
Administrateurs :
Comme d'habitude, tous les commentaires sont les bienvenus.
Inscrivez-vous à la lettre d'information. Celle-ci vous parviendra dès la parution de nouveaux articles. Vous trouverez la zone d'inscription à la lettre d'information en haut à droite de l'écran.
 
Et enfin, pour toutes vos questions techniques, utilisez le forum. D 'autre utilisateurs pourront vous répondre et vous aider. Cliquez ici pour accéder au forum...
Ads Blocker Image Powered by Code Help Pro

Ads Blocker Detected!!!

We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker.

Powered By
Best Wordpress Adblock Detecting Plugin | CHP Adblock